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Abstract
We compute the second variation of a general energy functional describing a
drop of incompressible liquid in contact with a fluid environment and a rigid
substrate structurally inhomogeneous and arbitrarily curved. Both surface
and line tensions, residing on the drop’s interfaces and along its contact line,
contribute to the energy functional. Our method is purely intrinsic, as it does
not resort to any representation of the drop’s shape. From the energy’s second
variation we also derive a criterion for the local stability of an equilibrium
configuration of the drop.

PACS number: 63.08.Bc

1. Introduction

The equilibrium of a liquid droplet laid on a solid substrate has already been studied for more
than two centuries: in the absence of external forces, the equilibrium shape of the free surface
of the droplet is a surface of constant mean curvature, and the constact angle, that is, the
angle that the droplet makes with the substrate, is constant, if the substrate is homogeneous.
Its value is determined by the well-known Young–Laplace formula. It is, however, crucial
to ascertain whether a given equilibrium shape is stable or not, since only stable, or at least
metastable equilibrium configurations can indeed be observed. Studies on the stability of fluid
surfaces are rare, especially when constraints are imposed on the energy functional, which
must be obeyed up to second order in the perturbations to the admissible shapes. Sekimoto
et al [1] studied the stability of several wetting morphologies, when a droplet lays on a planar
substrate. In particular, they proved analytically that a spherical cap is stable, at least in the
limiting case where the free surface of the liquid is nearly parallel to the substrate, that is, the
case where the contact angle is small. The authors drew this conclusion from the study of a
linear partial differential equation: a spherical drop sitting on a flat substrate is stable against
all perturbations that move the contact line, apart from a uniform translation. Another wetting
morphology, which in [1] was studied in a special case, is the fluid ridge, where a liquid is
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drawn along a solid wedge. This geometric setting has recently been studied in more detail
by Roy and Schwartz [2] who considered in general a cylindrical droplet laid on a cylindrical
substrate. Though the method of their analysis is confined to this two-dimensional case and
cannot easily be extended to less symmetric shapes, in [2] the role of the substrate’s curvature
in the stability of the drop is systematically explored for the first time.

Along a different vein, the analysis of Lenz and Lipowsky [3] obtained a general stability
criterion, for arbitrary wetting morphologies, in the presence of a structured substrate, that is,
a substrate whose chemical properties depend on the position. In this analysis, however, the
substrate is flat and no effect of curvature is at play. Yet another approach was pursued by
Gelfand and Lipowsky [4] who explored how a uniformly curved substrate such as a sphere or
a cylinder modifies the surface phase diagram of a fluid droplet lying on it. They incorporated
the curvature into an effective bulk order-field entering a Landau model. Using a simplified
free energy functional which is tractable analytically, they showed that curvature suppresses
pre-wetting transitions.

In the mathematical literature, a clear distinction is made between the concepts of stability
and minimality. Given a functional F defined on a Banach space B, a point P in B is stable for
F if for all Q ∈ B the function f (ε) := F(P + εQ) attains a minimum at ε = 0. On the other
hand, P is a strict local minimum for F in B if there is ε > 0 such that F(P ) < F(Q) for all
Q �= P in B that satisfy the inequality ‖Q − P ‖B < ε, where ‖ · ‖B denotes the norm in B. A
strict local minimum is also stable, but a stable point can fail to be a strict local minimum.

A considerable literature has been concerned with the stability of capillary surfaces, mostly
in the case where gravity is absent and the substrate supporting the drop is homogeneous (see,
in particular, [5, 6]). For the question about strict local minima in capillary theory, the reader is
especially referred to a series of papers by Vogel [7–9], where the proposed minimality criteria
stem from requiring the second variation of the energy functional to be strongly positive, a
condition which avoids the difficulty that Finn [10] pointed out in this context by remarking
that the mere requirement that the second energy variation be positive cannot guarantee that
the energy actually attains a minimum.

The aim of this paper is to prove a stability criterion for wetting, which would apply
to structured, inhomogeneous substrates, arbitrarily curved and bearing an adhesion effect
possibly diluted in space. This effect is especially relevant to the stability of very small
droplets, typically below the micron range, for which an effective interface potential accounts
for the balance of the forces between the fluid and the substrate (see, for example, [11]). For
drops of this size, a line tension also arises along the line where the drop, the substrate and the
environment fluid are in contact; this tension, which is negligible for macroscopic drops, is
likely to play a role in the stability of wetting on the sub-micron scale. We assess the stability
of the equilibrium shapes of a drop by computing the second variation of a general energy
functional. This leads us to a local stability criterion which is especially valuable whenever the
equilibrium shape of a drop is not unique. One such circumstance occurs for droplets sitting
on a fibre: it is well known that the equilibrium shape of a droplet can be either clamshell-like
or barrel-like, depending on the liquid volume, the contact angle and the fibre radius [12, 13].

The paper is organized as follows. In section 2, we present a variational formulation of
the wetting problem studied here and we arrive at the corresponding equilibrium equations for
an adhering drop. In section 3, we set forth our method to compute the second variation of
the general energy functional introduced in section 2: the major technical difficulty addressed
here arises from enforcing the constraint on the volume enclosed by the drop, dictated by the
incompressibility, and the constraint on the persistence of the contact line on the substrate.
Both these geometric constraints must be obeyed up to second order in the perturbations to
the equilibrium shape. In section 4, we then arrive at a stability criterion for adhering drops,
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Figure 1. A smooth surface S and its border C: {t, νS, ν} is the Darboux trihedron.

by computing the least eigenvalue of the second variation appropriately constrained. Finally,
in section 5, we draw conclusions for this work and we comment on the significance of the
line tension within our stability criterion. The paper concludes with seven appendices, mostly
technical in nature. In particular, the second appendix also illustrates by a simple example the
meaning of the second-order variation of the drop’s shape.

2. Variational formulation

In this section we prepare the way to the stability analysis developed in the following
sections. We first collect some preliminary mathematical results to make our development
self-consistent, then we posit the energy functional for a wetting drop and finally we arrive at
the equilibrium equations for the drop.

2.1. Mathematical preliminaries

Let S be a smooth orientable surface in the three-dimensional space with border on a smooth
closed curve C (see figure 1). An orientation is assigned to S by prescribing the unit normal ν;
the outer conormal νS is defined on C as the outward unit vector tangent to S and orthogonal
to C; the border is further oriented so that its unit tangent is t := νS × ν. The trihedron
{t, νS , ν} thus defined along C is called the Darboux trihedron (see p 261 of [14]). Let s be
the arc-length of C oriented like t. The Darboux trihedron varies along C according to the
Darboux equations:



dt

ds
= κgνS + κnν

dνS

ds
= −κgt − τgν

dν

ds
= −κnt + τgνS

(2.1)

where

κn := dt

ds
· ν κg := dt

ds
· νS and τg := dν

ds
· νS (2.2)

are, respectively, the normal curvature, the geodesic curvature and the geodesic torsion of C
relative to S. In the following we extensively employ the surface-divergence theorem (see,
for example, p 87 of [15]), which states that a smooth vector field u defined on the surface S
satisfies the equation∫

S
divs u da =

∫
S

Huν da +
∫
C
u · νS ds (2.3)
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Figure 2. Sketch of a drop deposited on a curved solid substrate. The boundary of the drop is
composed of the free surface S and the adhering surface S∗. The contact line C is the common
border of S and S∗.

where divsu is the surface divergence of u, that is, the trace of the surface gradient ∇su on
S, uν := u · ν is the normal component of u and H is the total curvature of S. To make
precise the sign convention adopted for H, we note that

∇sν = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 (2.4)

where e1 and e2 are tangent unit vectors along the principal directions of S and σ1, σ2 are the
corresponding principal curvatures. Here the total curvature of S is H := divsν = σ1 + σ2,
while the Gaussian curvature of S, soon to be employed, is K := σ1σ2. Moreover, when S is
sufficiently smooth the normal field ν obeys [16]

�sν = ∇sH + (2K − H 2)ν (2.5)

where �s denotes the surface Laplacian; in particular, �sν := divs∇sν. Similarly, one shows
that [16]

Lemma 2.1. The tensor

KI − H(∇sν) + (∇sν)2 (2.6)

where I is the identity, vanishes on all vectors tangent to S.

A particular result that will soon be employed is stated in the following lemma; its proof is
given in appendix A.

Lemma 2.2. Let g be a regular tangent vector field defined on S. Then∫
S

I2(∇sg) da = 1

2

∫
S

K|g|2 da − 1

2

∫
C
[(∇sg)g − (divsg)g] · νS ds (2.7)

where, for any second-order tensor L, I2(L) is the second invariant defined as

I2(L) := 1
2 [(tr L)2 − tr(L2)]. (2.8)

2.2. Free-energy functional

We consider a liquid drop of prescribed volume deposited on a curved, adhesive substrate. We
call B the region in space occupied by the drop and ∂B its whole boundary, which is composed
of the free surface S, where the drop is in contact with the environment fluid, and the adhering
surface S∗, where the drop is in contact with the substrate. The common border of S and S∗ is
the contact line C of the drop, where three distinct phases meet (see figure 2). The free-energy
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functional F of the drop is composed of four different terms, which are separately described
below:

F[B] = Fb[B] + Fs[S] + Fa[S∗] + F�[C]. (2.9)

The first term is the bulk energy

Fb[B] :=
∫
B

f dv (2.10)

which models the action of an external field on the whole drop. The scalar function f

generally depends on the position in space; it would represent not only gravity, but also any
diluted interaction between the drop and the substrate, in the spirit of [11, 17]. The second
term is the interfacial energy of the free surface S:

Fs[S] := γ

∫
S

da (2.11)

where γ is the constant surface tension of the drop. The next term,

Fa[S∗] :=
∫
S∗

(γ − w) da (2.12)

describes the adhesive properties of the substrate through the adhesion potential w. Here the
interfacial energy on the substrate is conventionally written as γ − w, implying that w > 0
for an adhesive substrate. Finally,

F�[C] :=
∫
C
τ ds (2.13)

is the free energy of the contact line C, where τ can be interpreted as a line tension.
Here both w and τ are taken as functions of the position on the substrate to describe

constitutive material inhomogeneities. When both w and τ are constant, arbitrary geometric
microstructures are still possible in the substrate. Assuming that both the adhesion potential
and the line tension are variable on the substrate makes the free-energy functional (2.9) very
general and our stability analysis accordingly more delicate.

2.3. Shape variation

The functional F is subject to the constraint on the volume of B and to the condition that S∗ be
part of the substrate. All admissible variations of F must preserve the drop volume and ensure
that S∗ glides on the substrate. In particular, a correct stability analysis relies on enforcing
both these requirements up to second order. Formally, we perturb the shape B of the drop by
mapping every point p into pε:

p �→ pε := p + εu + ε2v (2.14)

where ε is a perturbation parameter, and u and v are smooth vector fields describing the first-
and second-order variations of B, respectively. The meaning of the second-order variation v is
illustrated in appendix B. A field like this was similarly introduced by Peterson in a completely
different context (see [18, 19]). Here we make explicit the constraints that must be obeyed by
both u and v. To this end, we first describe how the shape variation in (2.14) affects volumes,
areas and lengths in general.

Let Bε be the image of B under the mapping p �→ pε in (2.14) and let Vε be the volume
of Bε and Aε the area of ∂Bε. It is known that

Vε =
∫
Bε

det Fε dv (2.15)
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where

Fε := I + ε∇u + ε2∇v

and that

Aε =
∫

∂B
|F∗

εν| da

where F∗
ε := det Fε

(
F−1

ε

)
T is the adjugate tensor of Fε (see pp 53–54 of [20]). Here and in

the following a superscript T denotes tensor transposition. If we set w := u + εv, then

det Fε = det(I + εw) = 1 + ε div w + ε2I2(∇w) + O(ε3) (2.16)

and it follows from (2.15) that

Vε =
∫
B

det Fε dv =
∫
B

[1 + ε div w + ε2I2(∇u)] dv + O(ε3). (2.17)

As proved in section 3.8 of [15], the following identity holds for any regular vector field h
defined on B:

tr[(∇h)2] − (div h)2 = div[(∇h)h − (div h)h]. (2.18)

Moreover, it can also be proved (see p 160 of [15]) that

(∇h)h − (div h)h = (∇sh)h − (divs h)h. (2.19)

Hence, by (2.8), (2.18) and (2.19), also using the divergence theorem and recalling the
definition of w, we arrive at

Vε = V + ε

∫
∂B

uν da + ε2
∫

∂B
vν da +

1

2
ε2

∫
∂B

[(divs u)uν − u · a] da + O(ε3) (2.20)

where V is the volume of B, vν := v · ν and

a := (∇su)Tν (2.21)

is a field everywhere tangent to ∂B. Similarly, since

F−1
ε = I − ε(∇w)T + ε2[(∇w)T]2 + O(ε3)

by the identities

(div w)ν − (∇w)Tν = (divs w)ν − (∇sw)Tν

[((∇w)T)2 + I2(∇w)I − (div w)(∇w)T]ν = [((∇sw)T)2 + I2(∇sw)I − (divs w)(∇sw)T]ν

one easily arrives at the following expression for the local surface dilation factor:

|F∗
εν| = 1 + ε divs u + ε2

[
divs v + 1

2 |a|2 + I2(∇su)
]

+ O(ε3) (2.22)

where (2.21) and the definition of w have also been used. Thus we conclude that

Aε = A + ε

∫
∂B

divs u da + ε2
∫

∂B

[
divs v +

1

2
|a|2 + I2(∇su)

]
da + O(ε3) (2.23)

where A is the area of ∂B.
Finally, (2.14) also induces a deformation of the contour C. If s is the arc-length on C,

then

dpε

ds
= t + εu′ + ε2v′ + O(ε3)
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where a prime denotes differentiation with respect to s. Thus, the local dilation factor along
C is ∣∣∣∣dpε

ds

∣∣∣∣ = 1 + εu′ · t +
1

2
ε2[2t ·v′ + u′ ·u′ − (u′ · t)2] + O(ε3). (2.24)

We call ν∗ and νS∗ the outer unit normal to B on S∗ and the outer conormal to S∗ along
the border C. In the following, the angle ϑc made by νS and νS∗ is often referred to as the
contact angle (see figure 2). Let t∗ = −t. Then {t∗, νS∗ , ν∗} is the Darboux trihedron on C
relative to S∗ oriented precisely like the Darboux trihedron {t, νS , ν} on C relative to S. In
particular, νS can be represented as

νS = cos ϑcνS∗ + sin ϑcν∗. (2.25)

In complete analogy with (2.1), the Darboux equations obeyed by {t∗, νS∗ , ν∗} are


dt∗
ds∗

= κ∗
gνS∗ + κ∗

nν∗
dνS∗

dS∗
= −κ∗

g t∗ − τ ∗
g ν∗

dν∗
ds∗

= −κ∗
nt∗ + τ ∗

g νS∗

(2.26)

where s∗ = −s and κ∗
n , κ∗

g and τ ∗
g are defined by the analogues of (2.2).

The fields u and v are not free on the adhering surface S∗ but they must ensure that the
contact between the drop and the substrate is preserved by the mapping (2.14), up to second
order in ε. As explained in appendix B, this requires that

u · ν∗ = 0 and v · ν∗ = − 1
2u · (∇sν∗)u on S∗. (2.27)

Thus, only the tangential components of both u and v can be freely chosen on S∗. It follows
from (2.20) and (2.27) that when the surface S∗ is kept by (2.14) on the substrate, it does not
contribute to the variation of the volume enclosed by the drop. In fact, by (2.27)1 and the
symmetry of ∇sν∗, we have that

a = (∇su)Tν∗ = −(∇sν∗)u on S∗ (2.28)

and so, by (2.27)2, (2.20) becomes

Vε = V + ε

∫
S

uν da + ε2
∫
S

vν da +
1

2
ε2

∫
S

[(divs u)u − (∇su)u] · ν da.

Hence, enforcing the constraint on the enclosed volume up to second order in ε requires that∫
S

uν da = 0 and
∫
S
(uν divs u − u ·a + 2vν) da = 0. (2.29)

A similar conclusion can also be drawn for the contribution of S∗ to the variation of the
total area A of both drop interfaces. Each integral in (2.23) can be split into an integral over
S and another integral over S∗. In particular, by the surface-divergence theorem (2.3) applied
to both surfaces and by (2.27)1,∫

S
divs u da =

∫
S

Huν da +
∫
C
u · νS ds (2.30)

and ∫
S∗

divs u da =
∫
C
u · νS∗ ds (2.31)
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while, by (2.27)2,∫
S∗

divs v da = −1

2

∫
S∗

Hu · (∇sν)u da +
∫
C
v · νS∗ ds. (2.32)

By using equations (2.28)–(2.32) and resorting to both lemmas 2.1 and 2.2, we finally reduce
(2.23) to

Aε = A + ε

(∫
S

Huν da +
∫
C
u · (νS + νS∗) ds

)
+ ε2

(∫
S

[
Hvν +

1

2
|a|2 + I2(∇su)

]
da

+
∫
C

{
v · (νS + νS∗) +

1

2
[(divs u)u − (∇su)u] · νS∗

}
ds

)
+ O(ε3). (2.33)

It is worth noting that equation (2.33), when applied only for the area A∗ of the single
surface S∗, becomes

A∗ε = A∗ + ε

∫
C
u · νS∗ ds + ε2

∫
C

{
v +

1

2
((divs u)u − (∇su)u)

}
· νS∗ ds + O(ε3). (2.34)

2.4. Energy variations

To compute the first and the second variations of F , it is expedient to expand the functions
f,w and τ as follows:


f (pε) = f (p) + ε∇f · u + 1

2ε2[(∇2f )u ·u + 2∇f · v] + O(ε3)

w(pε) = w(p) + ε∇sw · u + 1
2ε2

[(∇2
s w

)
u · u + 2∇sw · v

]
+ O(ε3)

τ (pε) = τ(p) + ε∇sτ · u + 1
2ε2

[(∇2
s τ

)
u ·u + 2∇sτ · v

]
+ O(ε3).

(2.35)

Note that, while f is defined in the whole B, both w and τ are defined only on S∗.
It follows from (2.35)1 and (2.16) that

Fb[Bε] := Fb[B] + ε

∫
B
(f (p) div u + ∇f · u) dv + ε2

∫
B

{
f div

[
v +

1

2
(div u)u

− 1

2
(∇u)u

]
+ (∇f · u)(div u) +

1

2
[(∇2f )u · u + 2∇f · v]

}
dv

where the identity (2.18) has also been employed. Moreover, using the identities

div(f u) = f div u + ∇f · u

div[(∇f · u)u] = (∇f · u) div u + u · (∇u)T(∇f ) + u · (∇2f )u

leads us to

Fb[Bε] = Fb[B] + ε

∫
B

div(f u) dv + ε2
∫
B

div

{
f

[
v +

1

2
(div u)u − 1

2
(∇u)u

]

+
1

2
[(∇f ) · u]u

}
dv

whence, by resorting to (2.19) and to the divergence theorem, we arrive at

Fb[Bε] = Fb[B] + ε

∫
∂B

f uν da + ε2
∫

∂B

{
f

[
v +

1

2
(divs u)u − 1

2
(∇su)u

]
· ν

+
1

2
[(∇f ) · u]uν

}
da + O(ε3).
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Then, splitting ∂B into the union of S and S∗, also using (2.21), yields

Fb[Bε] = Fb[B] + ε

∫
S

f uν da + ε2
∫
S

{
f

[
v +

1

2
(divs u)u − 1

2
(∇su)u

]
· ν

+
1

2
[(∇f ) · u]uν

}
da + O(ε3) (2.36)

where again no contribution arises from the adhering surface S∗.
The sum of the energies Fs[S] and Fa[S∗] can also be written as

Fs[S] + Fa[S∗] = γA + Fw[S∗] (2.37)

where

Fw[S∗] := −
∫
S∗

w da. (2.38)

It follows from (2.22) and (2.35)2 that

Fw[S∗ε] := −
∫
S∗

{
w + ε divs(wu) + ε2

[
divs(wv) + w

(
1

2
|a|2 + I2(∇su)

)

+
1

2

(∇2
s w

)
u ·u + divs u(∇sw) · u

]}
da + O(ε3) (2.39)

where S∗ε is the image of S∗ under the mapping (2.14). Since, by (2.27)1, the vector field u
is purely tangential on S∗, the surface-divergence theorem (2.3) gives∫

S∗
divs(wu) da =

∫
C
wu · νS∗ ds

and, by (2.27)2, we have that∫
S∗

divs(wv) da = −1

2

∫
S∗

Hwu · (∇sν∗)u da +
∫
C
wu · νS∗ ds.

Thus, we arrive at

Fw[S∗ε] = −
∫
S∗

{
w + ε2

[
−1

2
Hwu · (∇sν∗)u + w

(
1

2
|a|2 + I2(∇su)

)

+
1

2

(∇2
s w

)
u ·u + (divs u)(∇sw) · u

]}
da

− ε

∫
C
wu · νS∗ ds − ε2

∫
C
wv · νS∗ ds + O(ε3). (2.40)

Finally, using (2.24) and (2.35)3, we obtain from (2.13) that

F�[Cε] =
∫
C

{
1 + ε(∇sτ · u + τt ·u′) + ε2

[
τ

2
(2t ·v′ + u′ · u′ − (u′ · t)2)

+
1

2

[(∇2
s τ

)
u · u + 2∇sτ · v] + (∇sτ · u)(u′ · t)

]}
ds + O(ε3) (2.41)

where Cε is the deformed contact line C. Since

t′ = (∇st)t and ∇sτ · t = τ ′ (2.42)

an integration by parts along C, which is a closed contour, transforms (2.41) into

F�[Cε] =
∫
C

{
1 + ε[(∇sτ · νS∗)(u · νS∗) − τκ∗

g (u · νS∗)]

+ ε2

[
(∇sτ · νS∗)(νS∗ ·v) − τv · (κ∗

gνS∗ + κ∗
nν∗) +

τ

2
(u′ · u′ − (u′ · t)2)

+
1

2

[(∇2
s τ

)
u · u + 2∇sτ · v

]
+ (∇sτ · u)(u′ · t)

]}
ds + O(ε3) (2.43)
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where both equations (2.26)1,2 have been used to write

dt

ds
= dt∗

ds∗
= κ∗

gνS∗ + κ∗
nν∗

and the identity t∗ = −t has been used to see that

∇sτ − t · (∇sτ)t = (∇sτ · νS∗)νS∗ .

2.5. Equilibrium equations

We are now in a position to compute the first variation of F in (2.9), defined as

δF := d

dε
F[Bε]

∣∣∣∣
ε=0

.

The equilibrium equations for F guarantee that δF vanishes identically for all possible fields
u. By collecting all first-order contributions in ε from equations (2.33), (2.36), (2.40) and
(2.43), also with the aid of (2.20) and (2.37), we readily arrive at the following equilibrium
equations: {

γH + f = λ on S
γ cos ϑc + γ − w + ∇sτ · νS∗ − τκ∗

g = 0 along C
(2.44)

where λ is the Lagrange multiplier associated with the constraint on the volume enclosed by
the drop. Equation (2.44)1 can be interpreted as a balance of forces across the free surface S
of the drop; λ then represents the pressure difference on the two sides of S. When f = 0,
since both γ and λ are constant, (2.44)1 prescribes S to have constant mean curvature 1

2H .
Likewise, when τ = 0 and w is constant, (2.44)2 prescribes the contact angle ϑc of the drop
to be constant along C. Equation (2.44)1 is the standard Laplace equation, whereas (2.44)2 is
the generalized Young equation recently also found by Swain and Lipowsky [21].

3. Second variation

In this section we compute the second variation of the free-energy functional F in (2.9). The
method we employ does not resort to any explicit representation of the surface that supports
the drop: this perhaps makes our development formally more involved, but the outcome is
more general. We shall prove the following formula:

δ2F := d2

dε2
F[Bε]

∣∣∣∣
ε=0

= γ

∫
S

{|∇suν |2 + (2K − H 2 + ∂νf )u2
ν

}
da

− γ

∫
C

(
H ∗

sin ϑc

+ cot ϑcH + κg

)
u2

ν ds +
∫
C

{
τ(u′

s∗)
2 − [

τ(K∗ + (κ∗
g )2)

+ ∇sw · νS∗ − (∇2
s τ

)
νS∗ · νS∗ + κ∗

g∇sτ · νS∗
]
u2

s∗
}

ds. (3.1)

In equation (3.1), uν is subject to (2.29)1 and it is related to us∗ := u · νS∗ on C through

uν = sin ϑcus∗. (3.2)

Moreover, ∂νf := ∇f · ν is the normal derivative of f on S,H ∗ and K∗ are the total and
Gaussian curvatures of S∗, respectively. Clearly, when w is constant and τ vanishes on the
substrate, the second line integral in (3.1) vanishes and δ2F acquires a much simpler form,
which was proved in [5] and had already been employed in both [6] and [22]. In general, it is
remarkable that equation (3.1) depends only on the normal component of u on S, while both
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u and v have non-vanishing tangential components. For the ease of the reader, we split below
the meandering avenue that led us to (3.1) into several elementary strides.

Henceforth, it is expedient to decompose u on S as

u = u‖ + uνν (3.3)

where u‖ is the tangential component of u. It is shown in appendix C how to arrive at the
following formula:

1

2
(δ2Fb + γ δ2A) = 1

2

∫
S

{
γ
[|∇suν |2 + (2K − H 2)u2

ν

]
+ (∂νf )u2

ν

}
da

+
γ

2

∫
C
Huνu‖ · νS ds − γ

∫
C
uν(∇sν)u‖ · νS ds

− γ

2

∫
C
[(∇su‖)u‖ − (divs u‖)u‖] · νS ds + γ

∫
C
(1 + cos ϑc)v · νS∗ ds

− γ

2

∫
C
[(∇su)u − (divs u)u] · νS∗ ds − γ

2

∫
C

sin ϑcu · (∇sν)u ds (3.4)

which is the first building block of our development.
By (2.37), another building block of our computation is the second variation of the

functional Fw defined in (2.38) (see appendix D):

1

2
δ2Fw[S∗] = −

∫
C

{
wv · νS∗ +

w

2
[(divs u)u − (∇su)u] · νS∗ +

1

2
(∇sw) · u(u · νS∗)

}
ds.

(3.5)

We now write the second variation of F� in (2.13):

1

2
δ2F�[C] =

∫
C

{
(∇sτ · νS∗)(νS∗ · v) − τ

[
κ∗

gv · νS∗ − 1

2
κ∗

nu · (∇sν∗)u
]

+
1

2
τ [(u′

s∗ − ut∗κ∗
g )2 + (us∗τ ∗

g − ut∗κ∗
n)2] − 1

2
u2

t∗κ
∗
g (∇sτ · νS∗)

+
1

2
u2

s∗
[(∇2

s τ
)
νS∗ · νS∗ − 2κ∗

g∇sτ · νS∗
]

+
1

2
ut∗us∗

[(∇2
s τ

)
t∗ · νS∗

+
(∇2

s τ
)
νS∗ · t∗ − 2κ∗

g (∇sτ · t∗)
] − u′

t∗us∗∇sτ · νS∗

}
ds. (3.6)

In this formula, which is derived from (2.43) in appendix E, the field u has been decomposed
along C as

u = ut∗t∗ + us∗νS∗ . (3.7)

Our final concern in this section is to simplify the contributions to the second variation of
F that arise along the contact line C. Collecting the terms in (3.4), (3.5) and (3.6) that contain
v · νS∗ , we see that∫

C
{γ (1 + cos ϑc) − w − τκg∗ + (∇sτ · νS∗)}v · νS∗ds = 0

by (2.44)2. All remaining line integrals in equations (3.4), (3.5) and (3.6) constitute a functional
in the single field u that we denote by 1

2F
(2)
C . As shown in appendix F, this functional can
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eventually be written as

1

2
F (2)

C =
∫
C

{[
τ

2
κ∗2

g − 1

2
κ∗

g (∇sτ · νS∗) +
γ

2
sin ϑcκ

∗
n − γ

2
κg +

1

2
(w − γ )κ∗

g

]
u2

t

+

[
1

2

(∇2
s τ

)
t · νS∗ +

1

2

(∇2
s τ

)
νS∗ · t − κ∗

g∇sτ · t + γ sin ϑc(τ
∗
g − τg)

− 1

2
w′ − γ

2
(cos ϑc)

′
]

utus∗ +

[
τκ∗

g − γ

2
cos ϑc +

1

2
(w − γ )

]
utu

′
s∗

+

[
∇sτ · νS∗ +

γ

2
cos ϑc − 1

2
(w − γ )

]
us∗u′

t

+

[
τ

2
τ ∗2
g − τ

2
κ∗

nκ∗
n⊥ +

1

2

(∇2
s τ

)
νS∗ · νS∗ − κ∗

g∇sτ · νS∗

+
γ

2
sin ϑcκ

∗
n⊥ − 1

2
(∇sw · νS∗) + γ sin ϑc cos ϑc

(
H

2
+ κn⊥

)

− γ

2
κg cos2 ϑc +

1

2
(w − γ )κ∗

g

]
u2

s∗ +
τ

2
u′2

s∗

}
ds. (3.8)

From (2.25), (2.2)2, (2.26)1 and the identity

dt

ds
= dt∗

ds∗
we see that

κg = κ∗
g cos ϑc + κ∗

n sin ϑc (3.9)

so that in the integrand on the right-hand side of (3.8), the coefficient of u2
t becomes

1
2κ∗

g [τκ∗
g − ∇sτ · νS∗ − γ cos ϑc + w − γ ]

which vanishes by (2.44)2. Similarly, the integral along C of the three mixed terms vanishes,
as we now proceed to show.

It is proved in appendix G that

τ ∗
g − τg = −dϑc

ds
= −ϑ ′

c. (3.10)

Furthermore, by definition,(∇2
s τ

)
t = (∇sτ)′ (3.11)

and it follows from (2.26)2 that

dνS∗

ds∗ = −ν ′
S∗ = −κ∗

g t∗ − τ ∗
g ν∗ = κ∗

g t − τ ∗
g ν∗. (3.12)

By (3.11) and (3.12), we easily see that(∇2
s τ

)
t · νS∗ = (∇sτ)′ · νS∗ = (∇sτ · νS∗)

′ + (∇sτ · t)κ∗
g .

Moreover, since(∇2
s τ

)
t · νS∗ = (∇2

s τ
)
νS∗ · t

the coefficient of utus∗ in the integrand on the right-hand side of (3.8) can be written as[
∇sτ · νS∗ +

γ

2
cos ϑc − 1

2
(w − γ )

]′
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while by (2.44)2 the coefficient of utu
′
s∗ is

∇sτ · νS∗ +
γ

2
cos ϑc − 1

2
(w − γ ).

Hence, the terms in utus∗, utu
′
s∗, and u′

t us∗ can be combined together as{[
∇sτ · νS∗ +

γ

2
cos ϑc +

1

2
(w − γ )

]
utus∗

}′

whose integral along C is nought.
Finally, further use of equation (2.44)2 yields

w − γ

2
κ∗

g = −τ

2
κ∗2

g +
1

2
κ∗

g∇sτ · νS∗ +
γ

2
κ∗

g cos ϑc.

Moreover, it follows from both (F.5)3 and (F.6)3 that

H = divs ν = −(κn + κn⊥) H ∗ = divs ν∗ = −(κ∗
n + κ∗

n⊥)

K∗ = I2(∇sν∗) = κ∗
nκ∗

n⊥ − τ ∗2
g .

Using these equations, (3.9), and its analogues

κ∗
g = κn sin ϑc + κg cos ϑc (3.13)

κ∗
n = κg sin ϑc − κn cos ϑc (3.14)

we then give (3.8) the concise form

F (2)
C =

∫
C

{
τ(u′

s∗)
2 − γβu2

s∗
}

ds

where

γβ := τ
(
K∗ + κ∗2

g

)
+ (∇sw · νS∗) − (∇2

s τ
)
νS∗ · νS∗ + κ∗

g∇sτ · νS∗

+ γ [H ∗ sin ϑc + H cos ϑc sin ϑc + κg sin2 ϑc]. (3.15)

Thus, the complete expression for the second variation of F is reduced to

δ2F = γ

∫
S

{|∇suν |2 + (2K − H 2 + ∂νf )u2
ν

}
da +

∫
C

{
τ(u′

s∗)
2 − γβu2

s∗
}

ds (3.16)

which, by (3.2) is equivalent to the desired result (3.1).

4. Stability criterion

In the preceding section we have recorded the main steps of the laborious computation required
to write effectively the second variation of the general energy functional F in (2.9)–(2.13).
Here we derive from equation (3.16) a criterion for the local stability of the equilibrium
configurations of a drop described by F . Precisely, ‘local stability’ for the drop means ‘strong
positiveness’ for δ2F , in the same sense recalled by [7], but here relative to the L2-norm over
S. This requirement is equivalent to subjecting δ2F to the non-homogeneous constraint∫

S
u2

ν da = 1 (4.1)

in addition to (2.29)1, and to requiring δ2F to attain a positive minimum. As is standard in
such a case (see section VI.1 of [23]), we define the functional

F [uν] := 1

2

∫
S

{|∇suν |2 + αu2
ν

}
da + λ

∫
S

uν da − 1

2
µ

∫
S

u2
ν da +

1

2

∫
C

{
ξ(u′

s∗)
2 − βu2

s∗
}

ds

(4.2)
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where

α := 2K − H 2 + ∂νf (4.3)

ξ := τ

γ
(4.4)

and λ and µ are Lagrange multipliers associated with (2.29)1 and (4.1), respectively.
We now write the equilibrium equations for F, which will lead us to identify µ with the

minimum value attained by F on the constraints (2.29)1 and (4.1). Recalling (3.2), we set

us∗ = χuν on C with χ := 1

sin ϑc

. (4.5)

Perturbing uν as below

uε
ν = uν + εη (4.6)

with η a smooth scalar function on S, induces a similar perturbation in us∗ on C:

uε
s∗ = us∗ + εχη. (4.7)

It readily follows from (4.2) that

δF [η] = d

dε
F

[
uε

ν

]∣∣∣∣
ε=0

=
∫
S
{∇suν · ∇sη + [(α − µ)uν + λ]η} da

+
∫
C
{ξu′

s∗(χη)′ − βus∗χη} ds. (4.8)

By applying the surface-divergence theorem to the integral over S in (4.8) and performing
an integration by parts both there and in the integral along C, we easily see that δF vanishes
identically whenever uν obeys the equations

�suν − αuν − λ + µuν = 0 on S (4.9)

∇suν · νS − χ(ξ(χuν)
′)′ − βχ2uν = 0 along C. (4.10)

Now suppose that uν is a solution to these equations with λ and µ chosen such that (2.29)1

and (4.1) are satisfied. By multiplying both sides of equation (4.9) by uν and those of equation
(4.10) by uν and then integrating over S and along C, respectively, also using both (2.29)1 and
(4.1), we arrive at

F [uν] = µ.

This shows that the least value of µ for which there is a solution to equations (4.9) and
(4.10) is also the minimum of F on the constraints (2.29)1 and (4.1). We thus conclude that an
equilibrium configuration of a drop with energy represented as in (2.9)–(2.13) is locally stable
whenever the least eigenvalue µ in (4.9) is positive. At first glance, only the free surface S and
the contact line C contribute directly to determine the stable configurations of a wetting drop.
A deeper insight, however, reveals that the wetted surface S∗ of the substrate plays an indirect
role in the drop stability through both the total and Gaussian curvatures at the points traversed
by the contact line C and through the geodesic curvature of C relative to S∗ (cf equation (3.15)).

Here only the stability of the functional F has been systematically addressed; the issue
as to whether our stability criterion is related to the minimality of F was left untouched. We
conjecture that if the least eigenvalue that solves the problem in L2(S) stated in this section
is positive, then the second variation of F is also strongly positive in H 1(S), and hence F
attains a strict local minimum at S. We still do not possess a formal proof of this conjecture.
Were it true, our stability criterion for F would also ensure minimality.
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5. Conclusions and comments

We computed the second variation of the energy functional for an incompressible liquid drop
wetting a possibly structured substrate. We endeavoured to treat the substrate as arbitrarily
curved, and to consider a sufficiently general energy functional so that diluted interface
potentials could also be considered in our model. In principle, this makes our model applicable
to length scales where the line tension τ of the drop, that is, Gibbs’s excess energy residing
along the contact line, plays a role in the drop’s equilibrium configurations. The characteristic
length-scale ξ for the influence of line tension is apparently defined by (4.4). Since a theoretical
estimate for τ is 10−11 N (see, for example, [24] and p 240 of [25]) and γ is usually of the order
of 10−2 N m−1, ξ is expected to be in the nanometre range, where the validity of the continuum
model adopted in this paper could easily be questioned. Nonetheless, the line tension that
defines ξ is the most controversial quantity in the whole of wetting science. For a review of
the many problems connected with this quantity, starting from its very definition, we refer the
reader to [26]. As a reference figure, we record here the estimate made in [27] which shows
that for τ of the order of 10−9 N, the line tension should have a noticeable effect on the wetting
morphology of a drop when its size is 300 nm or smaller. Disparate measurements of τ have
appeared in the literature, some higher even by several orders of magnitude than the theoretical
estimates just recalled (see, for example, the values recorded in [28, 29]). Moreover, τ can be
either positive or negative.

Recently, very accurate measurements have shown that the line tension actually ranges
between 10−10 and 10−11 N (see, for example, [30–32]). In particular, in the experiments
performed by Wand et al [30], τ was found to change its sign with the temperature.

This neat result contradicts the theoretical argument of Li and Steigmann in [28] (see
also [29, 33]) claiming that thermodynamic stability requires τ to be positive. A similar
argument was also given by Clarke [34] within a statistical theory of capillarity. In essence,
these arguments assert that the drop’s energy functional F in (2.9) is unbounded from below
if τ < 0, as a wigglier and wigglier contact line C would decrease the line integral F� further
and further, almost without affecting the integrals Fb,Fa and Fs . However, while this is
unmistakably true, one should heed that in the limit where the curvature of C diverges the
model employed here also becomes inappropriate, as all curvature corrections to both surface
and line energies are ignored in F (see [35] for a formal treatment of these terms): this is likely
to undermine any formal instability argument resorting to a contact line that locally becomes
infinitely curved.

In our opinion, the stability criterion arrived at in this paper has the potential to clarify
this matter. Be τ positive or negative, the real issue is to find the shortest length d over
which the drop’s shape could be perturbed while leaving δ2F positive: the given equilibrium
configuration of the drop is actually unstable against modes that deform it over length scales
shorter than d. A partial conclusion has already been attained with this approach for straight
liquid ridges with radius R and contact angle ϑc = π

2 on a flat substrate: if τ < 0 then
d ≈ √|ξ |R (see [36]). This length could be much larger than |ξ |, which thus, at least in
this special case, is by no means a length scale that a drop described by the functional F in
section 2 can actually experience when τ < 0.
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Appendix A. Proof of lemma 2.2

Standard rules of tensor analysis (see, e.g., [37]) yield

divs[(∇sg)g − (divs g)g] = divs(∇sg)T · g + tr(∇sg)2 − (divs g)2 − ∇s(divs g) · g

and so, by definition (2.8),

I2(∇sg) = 1
2 [divs(∇sg)T − ∇s(divs g)] · g − 1

2 divs[(∇sg)g − (divs g)g]. (A.1)

To give the quantity [divs(∇sg)T − ∇s(divs g)] · g a simpler expression, we temporarily resort
to Cartesian components. The mth component of the vector divs(∇sg)T in the orthonormal
basis {e1,e2,e3} is

[divs(∇sg)T]m := divs[(∇sg)em].

The components of the vector d := (∇sg)em are

di = gi,kPkm

where the sum over repeated indices is understood,

Pjk := δjk − νjνk (A.2)

are the components of the projector onto the plane orthogonal to ν, and gi,k := ∂gi

∂xk
are the

Cartesian components of ∇g, where the gradient is evaluated on an extension of g away from
the surface S. Hence,

(divs d)m = (gi,kPkm),jPji = gi,kjPkmPji − gi,k(νk,j νm + νkνm,j )Pji .

Furthermore,

[∇s(divs g)]m = Pmk[divs g],k = Pmkgi,jkPji − Pmkgi,j [νi,kνj + νj,kνi]

so that by (A.2) and the symmetry of gi,jk in the indices j and k, we obtain that

[(divs d) − ∇s(divs g)]m = −gi,kνk,iνm − gi,kνkνm,i

+ νiνj νkgi,kνm,j + gi,j νj νi,m + gi,j νiνj,m − gi,j νmνjνkνi,k. (A.3)

Thus, rewriting (A.3) in intrinsic notation, we arrive at

divs(∇sg)T − ∇s(divs g) = −[(∇ν)T · ∇g]ν + ((∇g)ν · ν)(∇ν)ν

+ [(∇ν)T − (∇ν)](∇g)ν + (∇ν)T(∇g)Tν + [(∇ν)ν · (∇g)ν]ν (A.4)

where the full gradient of ν is computed on an extension of this field away from the surface
S. Since ∇ν and the intrinsic surface gradient ∇sν are related through

∇ν = ∇sν + (∇ν)ν ⊗ ν

and ∇sν is symmetric, we have that

[(∇ν)T − (∇ν)](∇g)ν · g = [ν ⊗ ν(∇ν)T − (∇ν)ν ⊗ ν](∇g)ν · g

= −[(∇ν)ν · g](∇g)ν · ν

where we also used the hypothesis that

g · ν = 0. (A.5)

Hence, by the identity

∇sg = ∇g(I − ν ⊗ ν)

we obtain that

[divs(∇sg)T − ∇s(divs g)] · g = (∇ν)T(∇g)Tν · g = −|(∇sν)g|2
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where we have resorted to both (A.5) and its consequence

(∇sg)Tν = −(∇sν)g. (A.6)

Thus, (A.1) becomes

I2(∇sg) = − 1
2 {|(∇sν)g|2 + divs[(∇sg)g − (divs g)g]}. (A.7)

By (A.5), application of the surface-divergence theorem leads us to∫
S

I2(∇sg) da = −1

2

∫
S

|(∇sν)g|2da − 1

2

∫
S

H(∇sg)g · ν da

− 1

2

∫
C
[(∇sg)g − (divs g)g] · νS ds.

Furthermore, it follows from lemma 2.1 that

Hg · (∇sν)g = K|g|2 + |(∇sν)g|2 (A.8)

whence further application of (A.6) yields (2.7).

Appendix B. Second-order variation

In this appendix we prove the equations in (2.27), which played a central role in this paper.
Before giving a general proof, we illustrate by example the subtleties implied in finding

the minima of a function on a manifold. Let C be a planar curve, parametrized in its arc-length
s as

p(s) − o = x(s)ex + y(s)ey

and let ϑ be the angle that the unit tangent vector t to C makes with ex . Then

t = cos ϑex + sin ϑey

and so

x ′ = cos ϑ y ′ = sin ϑ

where a prime denotes differentiation with respect to s. Moreover, the principal unit normal
n to C is

n = −sin ϑex + cos ϑey

so that

t′ = σn (B.1)

where σ = ϑ ′ is the curvature of C. Let f : R
2 → R be a smooth function and let

s �→ g(s) := f (x(s), y(s))

be the restriction of f to C. Clearly, a way to find the stationary points of f on C is to find the
stationary points of g. We thus compute

g′ = fxx
′ + fyy

′ = ∇f · t.

The points where g′ = 0 are those where ∇f is orthogonal to C. At any of these points f

attains a local minimum whenever g′′ > 0. By (B.1), we easily see that this condition reads

g′′ = t · (∇2f )t + σ∇f · n > 0. (B.2)

This same conclusion can also be reached otherwise: by exploring f near a putative
stationary point p0 on C by means of a local perturbation of p0 designed so as to describe a
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small arc on C. With this aim we note that, at least locally, we can represent the curve C as the
level set of a function h, so that p ∈ C if and only if h(p) = 0. We perturb p0 as follows:

pε = p0 + εu + ε2v

and we require that pε belongs to C, up to second-order terms in ε. To find the restrictions
imposed on u and v by this requirement, we first expand h near p0 as follows:

h(pε) = h(p0) + ε(∇h · u) + 1
2ε2[u · (∇2h)u + 2∇h · v] + O(ε3) (B.3)

and then we set h(pε) = O(ε3). Since p0 belongs to C and ∇h = |∇h|n, requiring the
right-hand side of (B.3) to vanish up to first order in ε amounts to requiring that

u · n = 0 (B.4)

or, equivalently, that u = ut. Moreover, using the Frénet–Serret equation for planar curves

n′ = −σ t

we arrive at

(∇2h)t = |∇h|′n − |∇h|σ t

whence it follows that the term in ε2 also vanishes in (B.3), provided that

vν := v ·n = σ

2
u2. (B.5)

To characterize the stationary points of f on C we expand f up to second order, obtaining

f (pε) = f (p0) + ε(∇f · u) + 1
2ε2[u · (∇2f )u + 2∇f · v] + O(ε3). (B.6)

The function f is stationary at p0, provided that

∇f · u = 0

or, equivalently, by (B.4), provided that

∇f · t = 0.

Finally, for f to attain a minimum at p0 the quadratic term in (B.6) must be positive for all
admissible u and v. Since, by (B.4) and (B.5),

u · (∇2f )u + 2∇f · v = u2t · (∇2f )t + 2vn∇f · n = u2[t · (∇2f )t + σ∇f · n]

we easily retrace the same inequality in (B.2).
The proof of both equations in (2.27) is indeed a slight extension of the example just

discussed. Let a smooth orientable surface S∗ be locally represented as a level set of the scalar
function h, so that h(p) = 0 and the unit normal ν∗ to S∗ is represented as

ν∗ = ∇h

|∇h| . (B.7)

We map a point p on S∗ into

pε = p + εu + ε2v

and we seek the conditions that both fields u and v must obey to guarantee that pε belongs
to S∗, up to second-order terms in ε2, that is, to ensure that h(pε) = O(ε3). By repeating
verbatim the reasoning leading to (B.3), we readily arrive at in the following conditions:

∇h · u = 0 (B.8)

and

u · (∇2h)u + 2∇h · v = 0. (B.9)
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By (B.7), (B.8) is equivalent to (2.27)1. Moreover, we note that

∇(|∇h|) = ∇(∇h · ∇h)1/2 = (∇2h)ν∗

because ∇2h is a symmetric tensor. For the same reason we can write

∇ν∗ = 1

|∇h|∇
2h − ∇h ⊗ 1

|∇h|2 ∇(|∇h|) = 1

|∇h|P∇2h (B.10)

where P := I−ν∗ ⊗ν∗ is the projector onto the plane tangent to S∗ at p0. The full gradient of
ν∗ in (B.10) is indeed the gradient of the extension of ν∗ in (B.7); it is related to the intrinsic
surface gradient ∇sν∗ by the formula

∇sν∗ = (∇ν∗)P. (B.11)

Since u is tangential and P is symmetric we can write

u · (∇2h)u = Pu · (∇2h)Pu = u · P(∇2h)Pu

whence, by (B.10) and (B.11), it follows that

1

|∇h|u · (∇2h)u = 1

|∇h|u · (∇sν∗)u. (B.12)

Thus, also by (B.7), (B.9) becomes

u · (∇sν∗)u + 2v · ν∗ = 0

which is precisely equation (2.27)2.

Appendix C. Second variation of Fb + γA

From equations (2.21) and (2.36) we see that

1

2
δ2Fb =

∫
S

{
f

[
vν +

1

2
(divs u)uν − 1

2
u · a

]
+

1

2
[(∇f ) · u]uν

}
da

= E1 + E2 + E3 + E4 (C.1)

where we have set

E1 :=
∫
S

f vν da E2 := 1

2

∫
S

f [(divs u)uν − u · a] da (C.2)

E3 := 1

2

∫
S

uν(∇sf ) · u‖ da E4 := 1

2

∫
S
(∂νf )u2

ν da. (C.3)

Then, in view of (2.37), we find it convenient to compute separately γ δ2A; with the aid of
(2.27)2, (2.33) and (2.25), one readily arrives at

1

2
γ δ2A = γ

∫
S

[
Hvν +

1

2
|a|2 + I2(∇su)

]
da + E5 (C.4)

where

E5 := γ

∫
C

{
(1 + cos ϑc)v · νS∗ − 1

2
[(∇su)u − (divs u)u] · νS∗ − 1

2
sin ϑcu · (∇sν∗)u

}
ds

(C.5)
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collects the contributions to 1
2γ δ2A localized on C. Combining together all surface integrals

in both (C.1) and (C.4), we define

E6 := γ

∫
S

[
Hvν +

1

2
|a|2 + I2(∇su)

]
da + E1 + E2

=
∫
S

[
(γH + f )vν +

1

2
|a|2 + I2(∇su)

]
da + E2.

By using the equilibrium equation (2.44)1 we also give E6 in the following form:

E6 =
∫
S

[
λvν +

1

2
|a|2 + I2(∇su)

]
da + E2

which can be thus simplified by resorting to (2.29)2:

E6 =
∫
S

[
λ

2
(u ·a − uν divs u) +

1

2
|a|2 + I2(∇su)

]
da + E2.

Finally, recalling (C.2)2 and (2.44)1, we conclude that

E6 = γ

∫
S

{
H

2
(u · a − uν divs u) +

[
1

2
|a|2 + I2(∇su)

]}
da

and we note that now
1
2 (δ2Fb + γ δ2A) = E3 + E4 + E5 + E6. (C.6)

To simplify E6 further we use equation (3.3) and write

∇su = ∇su‖ + ν ⊗ ∇suν + uν∇sν (C.7)

so that, by (2.21), a can be decomposed as

a = a‖ + ∇suν (C.8)

where a‖ := (∇su‖)Tν. Since u‖ · ν = 0 and ∇sν is a symmetric tensor, we also have that

a‖ = −(∇sν)u‖. (C.9)

Moreover, again by the symmetry of ∇sν,

(∇su)2 = (∇su‖)2 + uν(∇su‖)(∇sν) + ν ⊗ (∇su‖)T(∇suν)

+ uνν ⊗ (∇sν)∇suν + uν(∇sν)(∇su‖) + u2
ν(∇sν)2

whence, by (2.4), it follows that

tr(∇su)2 = tr(∇su‖)2 + 2uν∇sν · ∇su‖ + (H 2 − 2K)u2
ν .

Since, by (C.7),

divs u = divs u‖ + Huν (C.10)

we conclude that

I2(∇su) = I2(∇su‖) + Ku2
ν + uν(Hdivs u‖ − ∇sν · ∇su‖).

Similarly, resorting to (C.8) leads us to

E6 = γ

∫
S

[
H

2
(u ·a − uνdivs u)

]
da +

∫
S

[
1

2
|a‖|2 +

1

2
|∇suν |2 + a‖ · ∇suν

+ I2(∇su‖) + Ku2
ν + uν(Hdivs u‖ − ∇sν · ∇su‖)

]
da. (C.11)
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Perusal of (2.21), (3.3), (C.8), (C.9), (C.10) and lemma 2.2 transforms (C.11) into

E6 = γ

∫
S

{
1

2
(∇sν)2u‖ ·u‖ +

1

2
|∇suν |2 +

K

2
u‖ · u‖ +

1

2
(2K − H 2)u2

ν

− H

2
u‖ · (∇sν)u‖ +

H

2
(uνdivs u‖ + u‖ · ∇suν) − uν∇sν · ∇su‖

− (∇sν)u‖ · ∇suν

}
da − γ

2

∫
C
[(∇su‖)u‖ − (divs u‖)u‖] · νS ds.

By the following identities:

H

2
[uν divs u‖ + u‖ · ∇suν] = H

2
divs(uνu‖)

uν∇sν · ∇su‖ + (∇sν)u‖ · ∇suν = (∇sν) · ∇s(uνu‖)

we can also give E6 the expression

E6 = γ

∫
S

1

2
[(∇sν)2 − H∇sν + KI]u‖ ·u‖ da +

γ

2

∫
S

[|∇suν |2 + (2K − H 2)u2
ν

]
da

+ γ

∫
S

H

2
divs(uνu‖) da − γ

∫
S
(∇sν) · ∇s(uνu‖) da

− γ

2

∫
C
[(∇su‖)u‖ − (divsu‖)u‖] · νS ds. (C.12)

Since u‖ is a tangent vector field, the first integral in (C.12) vanishes by lemma 2.1.
Furthermore, the surface-divergence theorem yields∫

S

H

2
divs(uνu‖) = −1

2

∫
S

uν∇sH · u‖ da +
1

2

∫
C
Huνu‖ · νS ds.

Likewise, since ∇sν is a symmetric tensor,

(∇sν) · ∇s(uνu‖) = divs[(∇sν)uνu‖] − uν�sν ·u‖

whence, by the surface-divergence theorem and (2.5), we arrive at∫
S
(∇sν) · ∇s(uνu‖) da = −

∫
S

uν∇sH · u‖ da +
∫
C
uν(∇sν)u‖ · νS ds.

Thus, (C.12) becomes

E6 = γ

2

∫
S

[|∇suν |2 + (2K − H 2)u2
ν

]
da +

γ

2

∫
S

uν∇sH · u‖ da

+
γ

2

∫
S

Huνu · νS ds − γ

∫
S

uν(∇sν)u‖ · νS ds

− γ

2

∫
C
[(∇su‖)u‖ − (divs u‖)u‖] · νS ds.

Taking the surface-gradient of both sides of equation (2.44)1 and recalling equation (C.3)1 we
obtain

E3 +
γ

2

∫
S

uν∇sH · u‖ da = 0

and so, also with the aid of (C.3) and (C.5), we transform (C.6) into (3.4).
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Appendix D. Second variation of Fw

It follows from (2.40) that:

1

2
δ2Fw[S∗] = −

∫
S∗

{[
−1

2
Hwu · (∇sν∗)u + w

(
1

2
|a|2 + I2(∇su)

)

+
1

2

(∇2
s w

)
u · u + (divs u)(∇sw) · u

]}
da −

∫
C
wv · νS∗ ds. (D.1)

Let

E7 :=
∫
S∗

wI2(∇su) da. (D.2)

Since u is everywhere tangent to S∗, by equation (A.7) applied with g = u, the integral in
(D.2) can be recast as

E7 =
∫
S∗

w

{
1

2
divs[(divs u)u − (∇su)u] − 1

2
|(∇sν∗)u|2

}
da.

By applying equation (A.8) on S∗ with g = u, and by resorting to the surface-divergence
theorem, one then obtains

E7 = 1

2

∫
C
w[(divs u)u− (∇su)u] · νS∗ ds +

1

2

∫
S∗

{wKu2 − ∇sw · [(divs u)u − (∇su)u]} da

and so (D.1) becomes

δ2Fw[S∗] = −
∫
S∗

{
w

2
[u · (∇sν∗)2u − Hu · (∇sν∗)u + Ku2]

+
1

2

[(∇2
s w

)
u · u + divs u(∇sw) · u + ∇sw · (∇su)u

]}
da

−
∫
C
wv · νS∗ ds − 1

2

∫
C
w[(divs u)u − (∇su)u] · νS∗ ds.

By using the identity

divs{[(∇sw) · u]u} = (∇2
s w

)
u · u + ∇sw · (∇su)u + (∇sw) · u(divs u)

and employing lemma 2.1 and the surface-divergence theorem, one reduces δ2Fw to the form
in (3.5).

Appendix E. Second variation of F�

Note that, by (2.26)1,2,

u′ = (u′
t∗ + us∗κ∗

g )t∗ + (u′
s∗ − ut∗κ∗

g )νS∗ + (us∗τ ∗
g − ut∗κ∗

n)ν∗ (E.1)

where a prime denotes differentiation with respect to the arc-length s and t∗ = −t.
Then we write(∇2

s τ
)
u · u = u2

t∗
(∇2

s τ
)
t∗ · t∗ + u2

s∗
(∇2

s τ
)
νS∗ · νS∗ + ut∗us∗

[(∇2
s τ

)
t∗ · νS∗ +

(∇2
s τ

)
νS∗ · t∗

]
(E.2)
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and we insert this equation along with (E.1) in (2.43), thus arriving at

1

2
δ2F�[C] =

∫
C

{
(∇sτ · νS∗)(νS∗ · v) − τ

[
κ∗

gv · νS∗ − 1

2
κ∗

nu · (∇sν∗)u
]

+
1

2
τ [(u′

s∗ − ut∗κ∗
g )2 + (us∗τ ∗

g − ut∗κ∗
n)2] +

1

2

[
u2

t∗
(∇2

s τ
)
t∗ · t∗

+ u2
s∗

(∇2
s τ

)
νS∗ · νS∗ + ut∗us∗

[(∇2
s τ

)
t∗ · νS∗ +

(∇2
s τ

)
νS∗ · t∗

]]
− (ut∗∇sτ · t∗ + us∗∇sτ · νS∗)(u

′
t∗ + κ∗

gus∗)
}

ds (E.3)

where also (2.27)2 has been used. Moreover, since, again by (2.26)1 and the identity t′
∗ = − dt∗

ds∗
,(∇2

s τ
)
t∗ · t∗ = −(∇sτ · t∗)′ + ∇sτ · t′

∗ = −(∇sτ · t∗)′ − κ∗
g∇sτ · νS∗

and
1
2u2

t∗(∇sτ · t∗)′ + ut∗u′
t∗∇sτ · t∗ = 1

2 [u2
t∗∇sτ · t∗]′

the integral of which along C is zero, we give δ2F� the expression in (3.6).

Appendix F. Line integrals

The functional F (2)
C is defined by

1

2
F (2)

C [u] := γ

2

∫
C
Huνu · νS ds − γ

∫
C
uν(∇sν)u‖ · νS ds − γ

2

∫
C

sin ϑcu · (∇sν∗)u ds

− γ

2

∫
C
[(∇su‖)u‖ − (divs u‖)u‖] · νS ds − γ

2

∫
C
[(∇su)u− (divs u)u] · νS∗ ds

+
∫
C

w

2
[(∇su)u − (divs u)u] · νS∗ ds − 1

2

∫
C
(∇sw) · u(u · νS∗) ds

+
∫
C

{ [τ

2
κ∗

nu · (∇sν∗)u
]

+
τ

2
[(u′

s∗ − ut∗κ∗
g )2 + (us∗τ ∗

g − ut∗κ∗
n )2]

− 1

2
u2

t∗κ
∗
g (∇sτ · νS∗) +

1

2
u2

s∗
[(∇2

s τ
)
νS∗ · νS∗ − 2κ∗

g∇sτ · νS∗
]− u′

t∗us∗∇sτ · νS∗

+
1

2
us∗ut∗

[(∇2
s τ

)
t∗ · νS∗ +

(∇2
s τ

)
νS∗ · t∗ − 2κ∗

g∇sτ · t∗
]}

ds. (F.1)

We first put together the fourth, the fifth and the sixth integral on the right-hand side of
equation (F.1):

L1 := −γ

2

∫
C

[(∇su‖)u‖ − (divs u‖)u‖] · νS ds +
1

2

∫
C
(w − γ )[(∇su)u − (divs u)u] · νS∗ ds.

We then decompose u‖ in the local basis {t, νS} along C as

u‖ = utt + usνS (F.2)

whence we obtain that

∇su‖ = ut∇st + t ⊗ ∇sut + us∇sνS + νS ⊗ ∇sus (F.3)

and so

(∇su‖)u‖ = u2
t (∇st)t + ut (∇sut · t)t + usut (∇sνS)t + ut (∇sus · t)νS

+ usut (∇st)νS + us(∇sut · νS)t + u2
s (∇sνS)νS + us(∇sus · νS)νS . (F.4)
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By direct computation starting from (2.1) (see [38]) one obtains


∇st = κgνS ⊗ t + κnν ⊗ t + κg⊥νS ⊗ νS − τgν ⊗ νS
∇sνS = −κgt ⊗ t + κn⊥ν ⊗ νS − κg⊥t ⊗ νS − τgν ⊗ t

∇sν = −κnt ⊗ t − κn⊥νS ⊗ νS + τg(νS ⊗ t + t ⊗ νS)

(F.5)

where, at any point of C, κg⊥ and κn⊥ are the geodesic and normal curvatures of a curve on
S orthogonal to C that inherits the orientation induced by νS .1 In what follows, we will also
need a similar set of equations, obtained from (2.26):


∇st∗ = κ∗

gνS∗ ⊗ t∗ + κ∗
nν∗ ⊗ t∗ + κ∗

g⊥νS∗ ⊗ νS∗ − τ ∗
g ν∗ ⊗ νS∗

∇sνS∗ = −κ∗
g t∗ ⊗ t∗ + κ∗

n⊥ν∗ ⊗ νS∗ − κ∗
g⊥t∗ ⊗ νS∗ − τ ∗

g ν∗ ⊗ t∗
∇sν∗ = −κ∗

nt∗ ⊗ t∗ − κ∗
n⊥νS∗ ⊗ νS∗ + τ ∗

g (νS∗ ⊗ t∗ + t∗ ⊗ νS∗)

(F.6)

where now all quantities are referred to C seen as a curve on S∗ and to auxiliary curves on S∗.
Inserting (F.5) into (F.3) and (F.4) we arrive at

[(∇su‖)u‖ − (divs u‖)u‖] · νS = κg

(
u2

t + u2
s

)
+ ut (∇sus · t) − us(∇sut · t).

Likewise, also applying (3.7) and (F.6) we conclude that

L1 =
∫
C

{
−γ

2

[
κg

(
u2

t + u2
s

)
+ ut (∇sus · t) − us(∇sut · t)

]
+

1

2
(w − γ )

[
κ∗

g

(
u2

t∗ + u2
s∗

)
+ ut∗(∇sus∗ · t∗) − us∗(∇sut∗ · t∗)

]}
ds. (F.7)

Moreover, by recalling that t = −t∗ and by using equations (2.27)1 and (2.25), we readily see
that

ut∗ = −ut us = cos ϑcus∗ and uν = sin ϑcus∗ (F.8)

and so we can express the right-hand side of (F.7) only in terms of ut and us∗:

L1 =
∫
C

1

2
u2

t [−κgγ + κ∗
g (w − γ )] +

1

2
u2

s∗[−γ κg cos2 ϑc + κ∗
g (w − γ )]

− 1

2
ut [γ (cos ϑcus∗)′ − (w − γ )u′

s∗] +
1

2
us∗u′

t [γ cos ϑc − (w − γ )] ds. (F.9)

Similarly, let L2 be the sum of the first two integrals in (F.1):

L2 := γ

2

∫
C
Huνu · νS ds − γ

∫
C
uν(∇sν)u‖ · νS ds.

Using (F.5)3 and (F.2) one finds that

L2 =
∫
C
γ

[
uνus

(
H

2
+ κn⊥

)
− utuντg

]
ds. (F.10)

To simplify the integrands of both the third and the eighth integrals in (F.1), we compute

u · (∇sν∗)u = 2τ ∗
g ut∗us∗ − u2

t∗κ
∗
n − u2

s∗κ
∗
n⊥ = −(

2τ ∗
g utus∗ + u2

t κ
∗
n + u2

s∗κ
∗
n⊥

)
(F.11)

where both (F.5)3 and (F.8)1 have been used. Finally, we note that, by (F.8)1, in the seventh
integral of (F.1)

∇sw · u = w′ut + us∗(∇sw · νS∗). (F.12)

1 This curve is not unique: only its normal curvature κn⊥ is prescribed at the point where it crosses C, while κg⊥ is
not. However, such an indeterminacy does not affect our analysis, as our final result does not depend on κg⊥.
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Hence, inserting equations (F.9), (F.10), (F.11) and (F.12) into (F.1) and making repeated use
of (F.8), we find that

1

2
F (2)

C =
∫
C

{
γ

[
u2

s∗ sin ϑc cos ϑc

(
H

2
+ κn⊥

)
− utus∗τg sin ϑc

]

+
1

2
u2

t [−κgγ + κ∗
g (w − γ )] +

1

2
u2

s∗[−γ κg cos2 ϑc + κ∗
g (w − γ )]

− 1

2
ut [γ (cos ϑcus∗)′ − (w − γ )u′

s∗] +
1

2
us∗u′

t [γ cos ϑc − (w − γ )]

+
γ

2
sin ϑc

[
2τ ∗

g utus∗ + u2
t κ

∗
n + u2

s∗κ
∗
n⊥

] − 1

2
[w′ut + (∇sw · νS∗)us∗]us∗

− τ

2
κ∗

n

(
2τ ∗

g utus∗ + u2
t κ

∗
n + u2

s∗κ
∗
n⊥

)
+

τ

2

[
κ∗2

g u2
t + 2κ∗

gutu
′
s∗ + u′2

s∗

+ κ∗2
n u2

t + τ ∗2
g u2

s∗ + 2κ∗
nτ ∗

g utus∗
] − 1

2
u2

t κ
∗
g (∇sτ · νS∗)

+
1

2
u2

s∗
[(∇2

s τ
)
νS∗ · νS∗ − 2κ∗

g∇sτ · νS∗
] − u′

t∗us∗∇sτ · νS∗

− 1

2
us∗ut

[(∇2
s τ

)
t∗ · νS∗ +

(∇2
s τ

)
νS∗ · t∗ − 2κ∗

g∇sτ · t∗
]}

ds. (F.13)

Using the identity

(cos ϑcus∗)′ = (cos ϑc)
′us∗ + cos ϑcu

′
s∗

and collecting similar terms in (F.13), we easily arrive at (3.8).

Appendix G. Geodesic torsions

For completeness, we prove here equation (3.10). Let S and S∗ be two surfaces that intersect
each other along the closed curve C. Let ϕ be the angle between the principal normal n to C
and the outer normal vector ν to S, so that

n = cos ϕν − sin ϕνS (G.1)

where νS is the conormal vector to S along C defined in section 2. The binormal unit vector
b to C is defined as b := t × n. Since νS = ν × t, we can decompose b in the Darboux
trihedron associated with C regarded as a curve on S, thus obtaining

b = −cos ϕνS − sin ϕν. (G.2)

We differentiate the identity n · ν = cos ϕ with respect to s, using (2.1)3 and the Frénet–Serret
equation for space curves

dn

ds
= −σ t − τCb

where τC is the torsion of C: we thus arrive at

sin ϕ
dϕ

ds
= (τg − τC) sin ϕ

whence it follows that

−dϕ

ds
= (τC − τg). (G.3)

Similarly, we decompose n in the Darboux trihedron associated with C regarded as a curve
on S∗:

n = cos ϕ∗ν∗ − sin ϕ∗νS∗ .
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We reason again as above, observing however that the orientation of C must be changed to
preserve the same orientation of the Darboux trihedron. Thus, (G.3) is replaced by

−dϕ∗
ds

= dϕ∗
ds∗

= (τC − τ ∗
g ). (G.4)

Finally, since ϕ + ϕ∗ − ϑc = π , we obtain from (G.3) and (G.4) that

−dϑc

ds
= τ ∗

g − τg

which is the desired result (3.10).
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